Smart Networks Project

David Jaffe
Cisco Systems
djaffe@cisco.com

Jean Walrand
University of California, Berkeley
wlr@eecs.berkeley.edu

November 13, 2002

Team

- ◆ CISCO:
 - David Jaffe
- **UCB**:
 - Venkat Anantharam
 - Eric Chi
 - Antonios Dimakis
 - Linhai He
 - Bill Hodge
 - Eduardo Magaña
 - Daniel Morató
 - Jun Shu
 - Wilson So
 - David Tse

- Teresa Tung
- Pravin Varaiya
- Aaron Wagner
- Jean Walrand
- UCLA:
 - Rajive Bagrodia's Team
- Georgia Tech:
 - Richard Fujimoto's Team
- **UIUC**:
 - Jennifer Hou's Team
- UMD:
 - John Baras' Team

Outline

- **♦**Goals
- Approach
- Illustration
- Complementary Work
- Future Work

Goals

QoS over Ad Hoc Networks

- Suitable for Large Networks
- ◆ EF + BE Traffic
- Multiple Access Channels
- Handles Mobility: Changing Topology
- Local Optimization
- Implementation

Approach

- Scalable QoS Routing Algorithm
 - Clustering
 - Intra-Domain QoS Routing → Domain Summary
 - Inter-Domain QoS Routing
 - On-Line Algorithm
- Protection of QoS
 - Traffic Shaping of BE Traffic
 - Protocol for Distributing LB Parameters
- Adapt to Topology Change
 - Fast Recomputation
- Local Optimization
 - Batch Path Allocation when Needed

Illustration

- Mobile Nodes
- Requests for QoS-Connections
- QoS Routing
 - Clustering
 - Local Optimization after Changes

8

Illustration: Clustering

Illustration: Cluster Summaries

Illustration: On-Line QoS Routing

Illustration: Intra-Domain QoS Routing

13

Complementary Work:

- SLA Provisioning
- End-to-End Call Admission

- Goal: Distributed Algorithm for SLAs
- Application: MPLS ...

12

13

 Shortest-path routing based on hop-count

Demand:

$S \setminus D$	1	2	3	4	5
1		10	10	10	10
2	20		5	15	10
3	10	15		5	20
4	10	25	20		5
5	5	15	20	10	

Price/Mbps

Utility / Mbps

Problem:

Users and ISPs are selfish They want to maximize their utilities

How to select SLAs?

Solution:

Game where players adjust the offered QoS

backbone links

Complementary Work: End-to-End QoS

- ◆Goal: End-to-End CAC of VoIP
- Implementation by AQM

Future Work

- Faster Dynamic Routing
 - Precomputation
 - Local Rerouting
- Increase Efficiency
 - Improved Summary Algorithm
- Improve Mobility Support
 - Dynamic Clustering
 - Dynamic Channel Allocation